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A diffusion model was employed to describe both the gas and the liquid mixing in bubble columns 
with countercurrent flow of the gas and liquid streams. Analytic solutions were developed that 
give concentration profiles within the bubble column for the case of the partial gas and liquid 
mixing in the vertical direction. From this a relation was developed and evaluated between the 
Murphree plate efficiency and the number of overall transfer units for different degrees of mixing 
in both phases. 

A bubble column commonly used is a simple device in which the gas is dispersed 
into the liquid in a suitable manner. The net flow of the phases in the gas-liquid 
mixture can be counter- or co-current. The degree of liquid and gas mixing is one 
of the factors influencing the performance of such a gas-liquid contactor. When the 
gas and liquid flow rates are very low an assumption of piston flow of gas is usually 
made and seems to be feasible. Even in this quiescent regime the liquid is considerably 
mixed. At higher flow rates oscillations and circulations of the liquid may occur 
which generally tend to mix both the gas and liquid in columns. Such flow patterns 
often develop especially in large vessels. Knowledge the gas and liquid concentra-
tion gradients across the column and hence the degree of mixing in the both phases 
is important in the proper analysis of experimental data and the scaleup of contacting 
devices. While the effect of liquid mixing is taken into account in the design of bubble 
columns, piston flow of the gas phase is assumed 1 - 3 . 

In this paper a diffusion model of liquid mixing4 '5 is extended to express quanti-
tatively the relation between the column performance and the intensity of axial 
mixing in both the gas and the liquid. 

THEORETICAL 

The diffusion model is based on the conception that the diffusion fluxes of a com-
ponent in both phases are proportional to their concentration gradients. In analogy 
to molecular diffusion this constant is called turbulent diffusivity. This conception 
is justified in cases where the gas phase flows uniformly through the gas-liquid 
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mixture which is a reasonable first approximation for bubble columns under normal 
operating conditions. Although the mixing is rather caused by liquid circulation indu-
ced by the rising gas than a diffusive transport, we believe that the simplified model 
is a useful approach. 

Mass transfer in a bubble column is treated here using the following simplifying 
assumptions: 1) uniform gas and liquid conditions in horizontal planes; 2) constant 
values of the overall mass transfer coefficient, turbulent diffusivities and the density 
of the gas-liquid mixture across the column; 3) counter-current flow of gas and liquid; 
4) constant molar flow rates of each phase through the column; 5) linear gas-liquid 
equilibrium relation; 6) gas component is absorbed by liquid; 7) isothermal steady 
state operation. 

A material balance over a differential element of buble column as depicted in Fig. 1 
leads to the relation 

„ r \ d 2 x r dx ^ „ d 2 y „ dy „ 
+ D ° F e a e ° S F + G i - 0 • ( ; ) 

If a chemical reaction occurs in either phase an additional reaction term appears 
in the balance. Only in the case of first (or zero) order reaction the analytical solution 
can be obtained. More complicated kinetics would require numerical integration8 . 

1 
Lx3 

I H = 0 

Gy 

f t 1 H 

t 1 
H 

/ / / / / / / / / / / d H 

G(y. %4H) 
t 2 t 2 1 

W - V ' J B •BiH)L«-m*H> 

H + dH 

1 G/i 1 
LX2 

H = 

FIG. l 

Diffusion Model of Gas and Liquid Mixing 
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Using the relative flow path w and the Peclet numbers for both phases this equa-
tion can be converted to dimensionless form 

d2x n dx G PeL d2y G n dy 
— - - PeL — + + - PeL — = 0 , (2) 
dw2 dw L PeG dw L dw 

where 

PeG - HtGlDGFgGeG and PeL = H^DJQ^ 1 - ec) . (3a,b) 

The rate of mass transfer f rom gas to liquid can be expressed as 

= — • w 

L dw PeL dw2 

Using Henry's law in the form: 

x* = yjm (5) 

we can eliminate in Eq. (4) the equilibrium liquid phase concentration x* corres-
ponding to the local gas phase concentration and get 

~ P e L T 1 - X N o o P e L x + ~ NO GPeL y = 0 , (6) 
dw dw L 

where 

N o g = (KLGFHJKAL) (7a) 

and 

A = m(G/L) . (7b) 

On introducing the new concentrations defined as 

X = m(xlyi) and Y=y\y, (8a, b) 

the Eqs (2) and (6) can be written as follows: 

- Per. — + A — + I Pe, — = 0 , (9) 

- Pe, ~ - >. N0 GPeLA' + A N O G Pe L 7 = 0 . (10) 
dw dw 
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A number of comments have been published on the boundary conditions of such 
equations. Those originally suggested by Damkohler6 give physically satisfying 
results. At the liquid inlet we may employ the relations 

w-> + 0 + Lm 
PeL \ d w / w + 0 

dy/dw = 0 

Similarly at the liquid exit from the column we have 

• w = 0 . 

dX/dw = 0 

i - 1 
1 /dY 

PeG \dw 

w — 1 . 

(lla) 

(lib) 

(12a) 

(12b) 

The inlet concentration jumps are characteristic of the conditions {lla) and (12b) 
which result from the removal of solute at the inlet of respective phases by turbulent 
mixing. In the case of piston flow through the column, the value of the Peclet number 
would diverge and the concentration jump would vanish. At the other extreme 
of perfect mixing, the Peclet number would vanish, the concentration jump would 
become maximum and the right hand sides of Eqs (lla) and (12b) become indefinite. 

Equations (9) and (10) constitute a set of linear differential equations with con-
stant coefficients. On elimination of either dependent9 - 1 3 variable and its derivatives 
we obtain the characteristic equation 

P{P3 + (PeG - PeL) P2 ~ 

- [PeGPeL + NOG(PeG + 2 PeL)]p + NOGPeGPeL(l - X)} = 0 . (73) 

The first root is zero (pl = 0) and the remaining three roots p2, p3, p4 can be 
found applying the trigonometric solution of the cubic equation7 within capital 
brackets in Eq. (13). For all combinations of parameters used in this work the cubic 
equation had three different real roots. The general solution of equations (9) and (10) 

X = ci + X c, exp (Piw) , (14) 
i = 2 

4 

y = kx + J] kx exp (Piw) . (15) 
i = 2 

The relations between the integration constants in equations (14) and (15) are 
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found by substituting these integrated solutions into equation (10) of the original 
system: 

= (16) 

*i = M 1 " i>i/PeL)M N o g + 1] Ci i = 2, 3, 4 . (/7) 

The constants for the desired particular solution are determined with the aid 
of the boundary conditions (11a,b) and (12a,b): 

= - S c,(l - P,/PeL) , (18a) 
i = 2 

c2 = (1 - X 3 ) (K 3 L 4 - K 4L 3)/D , (/«&) 

c3 = (1 - X 3 ) (K 4 L 2 - K2L4)lD , {18c) 

c4 = (1 - X 3) (K2L3 - K3L2)lD , (18d) 

where 

= K2(L3MA - L 4 M 3 ) + iC3(L4M2 - L 2 M 4 ) + K 4 (L 2 M 3 - L 3 M 2 ) , 
.(IP) 

= P,|>,(1 - Pi/PeJM N o g + 1] , (20) 

Lj = Pi exp (Pi) i = 2,3,4 (21) 

Mj = [exp ( P i ) ] (1 + P i/PeG) [Pi(l - Pi[PeL)/A NOG + 1] + [(P i/PeL) - l ] . (22) 

The solutions give gas and liquid concentration profiles within the bubble column. 
The mass transfer mechanism is dependent on the rate of mass transfer as expressed 
by the number of overall transfer units NO G , the degree of gas mixing as expressed 
by the Peclet number PeG, the degree of liquid mixing as expressed by the Peclet 
number PeL and the operating conditions as expressed by the ratio A. The Peclet 
number can range from zero when a respective phase is completely mixed to in-
finity when it flows through the column without axial mixing (piston plow). It is 
apparent that because of physical interaction of gas and liquid streams in the column 
the mixing intensity of one phase will affect the degree of mixing of the other phase. 
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Concentration Profiles 

In order to show an effect of mixing of the gas and liquid on the concentration 
profiles within the column we made systematic calculation of the concentrations 
from Eqs (73) —(22) for selected values I, NOG, PeG and PeL. Results for limiting 
cases of piston flow or perfect mixing are shown in Figs 2 and 3. It was assumed 
in all computations that the liquid entering the column did not contain any solute, 
i.e. X3 = Xw_»_o = 0. The horizontal lines correspond to perfect mixing in either 
phase. It is of interest to note in Fig. 3 that the concentration profiles are practically 
linear when both gas and liquid flows without mixing (piston flow). The limiting size 
of the inlet concentration jumps given by Eqs (11 a) and (12b) is also visualized 
in Figs 2 and 3. The concentration discontinuity at the inlet disappears in the case 
of piston flow of either phase. Size of maximum concentration jump on one phase 
that corresponds to its perfect mixing is further increased if the other phase is un-
mixed. 

With respect to equations (8a) and (8b) which define X and Y, the local liquid 
concentration can be viewed as the equilibrium gas concentration. Then one can take 
the a distance between the X and Y lines as a reduced driving force of mass transfer 
between the two phases. When comparing the distance between the lines 1 and 3 

FIG. 2 

Concentration Profiles for Perfectly Mixed 
Liquid (PeL — 0), A = 1, N O G - 2 

J Liquid concentration, PeG = 0; 2 liquid 
concentration, PeG —> co; 3 gas concen-
tration, PeG = 0; line 4: gas concentration, 
PeG ->oo. 

FIG. 3 

Concentration Profiles for Piston Flow of 
Liquid (PeL ->oo) , X = 1, N O G = 2 

1 Liquid concentration, PeG — 0; 2 liquid 
concentration, PeG—>oo; 3gas concentration, 
Pe G = 0; 4 gas concentration, Pe G - > o o . 
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and then between the lines 3 and 4 in Figs 2 and 3 we can see that the driving force 
is altered by mixing. If both phases are perfectly mixed the driving force is constant 
along the column. When the liquid phase remains perfectly mixed and the gas phase 
flows without mixing, the driving force is lowered at the liquid inlet (w = 0) and 
it is considerably increased at the liquid outlet (w = 1). In the case of plug flow 
of both phases the driving force does not practically change with the column length 
but is considerably greater than in the case of perfect mixing of both phases. If the 
liquid phase is unmixed and the gas is perfectly mixed the driving force is increased 
at the liquid inlet and it is decreased at the other end of the column in comparison 
with the previous case. Numerical values of the driving force for the respective cases 
are given in Table I. 

The mean driving force expressed as the arithmetic mean over the column is the 
greatest in the case when both the gas and liquid phase flow without mixing. When 
either phase is perfectly mixed the mean driving force is considerably lowered. 
Further decrease in driving force is observed if the other phase is also perfectly 
mixed. For different degrees of mixing in both phases the concentration profiles 
in the liquid phase are plotted in Figs 4 — 6. These results show a general region where 
the concentration profiles are sensitive to the value of the Peclet number. To de-
termine with more accuracy when perfect mixing or piston flow of either phase 
can be assumed it is also necessary to know to what extent the other phase is mixed. 

TABLE I 

Effect of Mixing on Driving Force for X = 1, N O G = 2 

Mean driving force 

Driving force ( Y — X ) 
( Y - X ) d w 

o 

liquid inlet liquid outlet 
w = 0 w = 1 

PeG , PeL co 

00 CO 

00 0 

0 oo 
0 0 

0-33 
0-51 
0-07 
0-20 

0-33 
0-07 
0-51 
0-20 

100 
0-70 
0-70 
0-61 
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Stage Efficiency 

The degree of mixing of both phases is one of the factors influencing the plate ef-
ficiency needed for the design of sectionalized bubble columns. For generalized 
correlations of mass transfer on trays in such columns it is however more suitable 
to employ quantities such as the number of overall transfer units or the overall mass 
transfer coefficient than the plate efficiency itself. Among other factors, the rela-
tion between these quantities depends on the concentration profiles across a stage 
and hence on the intensity of mixing of both phases. 

The Murphree plate efficiency is defined as 

EMV = O2 - .Vi)/(y* - yi) , (23) 

where 

v * = mx2 . (24) 

With respect to the concentrations X and 7 introduced by Eqs (8a) and (8b) we can 
rewrite the definition of Murphree plate efficiency as 

eMv = [1 - ( r )w=o]/ [ i - M w = J • i.25) 

Since the systematic calculation of, for example, the number of transfer units 
from the plate efficiency is tedious, for selected values of NO G , X, PeG and PeL we cal-
culated the corresponding values of £ M V on a computer. Selected results are shown 

0-61 1 1— 1 1 7-1 051 1 1 1 1 ^ 

04 

02 

0 0-4 w 0-8 

FIG. 4 

Concentration Profiles for X — 1, N O G = 2 
and PeG = 0 - 5 

0-3 

0-1 

0 04 M 0-8 w 

FIG. 5 

Concentration Profiles for X = 1, N O G — 2 
and PeG = 2-0 
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in Figs 7 — 9. Similarily as in the above computations of the concentrations profiles 
it was assumed that the liquid entering the stage did not contain any solute. In these 
calculations the numerical values of the plate efficiency are independent of a value 
arbitrarily assigned to the inlet liquid concentration as would be expected. The course 
of the curves in these figures indicates that the plate efficiency is more sensitive to the 
mixing intensity in the range of lower values of the Peclet number. When comparing 

FIG. 6 
Concentration Profiles for X = 1, N O G = 2 
and PeG = 7 

FIG. 8 
Dependence of Plate Efficiency on PeG and 
PeL for X = 1, N o g = 0-5 

FIG. 7 
Dependence of Plate Efficiency on PeG and 
PeL for X = 1, N o g - 1 

FIG. 9 
Dependence of Plate Efficiency on PeG and 
PeL for X — 0-5, N O G = 1 
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the values plotted in Fig. 7 and 8 one can observe that the effect of mixing is more 
pronounced when the rate of mass transfer expressed by NOG is higher. Relative 
magnitude of mixing effect of either phase is determined by the magnitude of the 
ratio of equilibrium and operating lines. When this ratio X is less than unity the plate 
efficiency is more sensitive to the degree of gas mixing. If X is greater than unity 
the liquid mixing has a greater influence on the plate efficiency than mixing of the 
gas phase. In the case of X = 1 the effect of mixing of the respective phases is of the 
same magnitude as shown in Table II. 

RESULTS 

In our previous work on performance of slotted trays9 we converted the plate effi-
ciencies to number of overall transfer units taking account of vertical liquid mixing 
in the foam layer. These values of NOG were then used in correlations of mass transfer 
on Turbogrid trays. Measurements of gas residence time in bubble columns reported 
by Carleton and coworkers10 and Towell and Ackerman11 provide the data also 
for evaluation of an effect of the gas phase mixing. The required values of the Peclet 
numbers were calculated from Eqs (3 a) and (3b). The values of the liquid turbulent 
diffusivity were taken from the work of Dilman and Senkina12 and the values of the 
gas turbulent diffusivity given by Towell and Ackerman11 were used. These authors 
measured the turbulent diffusivities under the- conditions considerably different 
from ours (column diameter d = 0-150 m, tray free area 8%, slot width 4 mm, system 
methanol-water), so that the values of the Peclet numbers presented in Table III, 
can be considered to be rough approximations only. The plate efficiencies were 
measured for total reflux over the range of superficial vapor velocities 0-51—0-67 
ms" 1 . The height of foam increased from 0-18 fo 0-42 m as the vapour flow rate 
increased. 

TABLE I I 

Dependence of Stage Efficiency on Peclet Numbers and Ratio X for N 0 G = 1 

X 

PeG PeL 0-5 1-0 1-5 

EMV reduction EMV reduction EU v reduction 

10 10 0-7135 - 0-8478 - 1-0102 -
0-5 10 0-5794 0-1341 0-6432 0-2046 0-7082 0-3020 

10 0-5 0-6228 0-0907 0-6432 0-2046 0-6641 0-3461 
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TABLE I I I 

Sample Evaluation of Measurements of Plate Efficiency 

WG E DG P DL . 104 

rr. M V r e G 2 - 1 m s m m s m s 
PE L N Q G 

0-51 0 1 8 
0-52 0-21 
0-55 0-24 
0-60 0-29 
0-62 0-34 
0 6 7 0-42 

1-20 0-22 
119 0-22 
1-17 0-22 
1-20 0-25 
1-21 0-25 
114 0-28 

106 5 
1-27 5 
1-53 5 
1-74 5 
2-11 5 
2-51 6 

0-55 3-80 
0-68 3-75 
0-86 3-15 
1-09 3-22 
1-34 3-01 
1-43 2-89 

As can be seen from Table III the intensity of axia! gas and liquid mixing de-
creases with increasing foam height. The values of the Peclet number for the gas 
phase are higher than those for the liquid phase by a factor of about two. 

Although the operating conditions for bubble columns are somewhat different 
from those we employed in our experiments it can be seen that a more exact analysis 
of mass transfer in such columns would require accurate measurements of turbulent 
diffusivity in both the gas and the liquid. A large effect of the column diameter on the 
turbulent diffusivity should be also considered. 

LIST OF SYMBOLS 

q integration constants given by Eqs (18a)— (18d) 
DG turbulent diffusivity in the gas phase (m2 s - 1 ) 
DL turbulent diffusivity in the liquid phase ( m 2 s _ 1 ) 
eG volumetric fraction of gas 
£ m v vapour Murphree plate efficiency (Eq. (23)) 
F cross section of the column (m2) 
G gas flow rate (mol s - 1 ) 
H length of flow path in the column from inlet (m) 
HY height of aerated liquid (m) 
k-x integration constants given by Eqs (16), (17), (18a)~(18d) 
KLa overall gas mass transfer coefficient (mol m ~ 3 s _ 1 j 
L liquid flow rate ( m o l s - 1 ) 
m Henry's law constant 
NOG number of overall gas phase transfer units (Eq. (7J) 
PeG Peclet number for the gas phase (Eq. (3a)) 
PeL Peclet number for the liquid phase (Eq. (3b)) 
w — HjHy relative flow path length through aerated liquid 
wG linear superficial gas velocity (m s _ 1 ) 
x liquid mole fraction of solute 
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y 
yi 
y 2 
Y = y/y! 
X = mGjL 
QG 

x2 

X= rnxjyx 

exit liquid mole fraction of solute 
inlet liquid mole fraction of solute 
liquid mole fraction of solute in equilibrium with gas, y (Eq. (5)) 
concentration of solute in liquid 
gas mole fraction of solute 
inlet gas mole fraction of solute 
exit gas mole fraction of solute 
concentration of solute in gas 
ratio of slope of equilibrium and operating line 
molar density of gas ( m o l m - 3 ) 
molar density of liquid (mol m~ 3 ) 
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